On Some Polytopes
نویسنده
چکیده
In this paper, we consider polytopes P that are contained in the unit hypercube. We provide conditions on the set of infeasible 0,1 vectors that guarantee that P has a small Chvátal rank. Our conditions are in terms of the subgraph induced by these infeasible 0,1 vertices in the skeleton graph of the unit hypercube. In particular, we show that when this subgraph contains no 4-cycle, the Chvátal rank is at most 3; and when it has tree width 2, the Chvátal rank is at most 4. We also give polyhedral decomposition theorems when this graph has a vertex cutset of size one or two.
منابع مشابه
Linear Programming, the Simplex Algorithm and Simple Polytopes
In the first part of the paper we survey some far reaching applications of the basis facts of linear programming to the combinatorial theory of simple polytopes. In the second part we discuss some recent developments concurring the simplex algorithm. We describe sub-exponential randomized pivot roles and upper bounds on the diameter of graphs of polytopes.
متن کاملNP-Completeness of Non-Adjacency Relations on Some 0-1 Polytopes
In this paper, we discuss the adjacency structures of some classes of 0-1 polytopes including knapsack polytopes, set covering polytopes and 0-1 polytopes represented by complete sets of implicants. We show that for each class of 0-1 polytope, non-adjacency test problems are NP-complete. For equality constrained knapsack polytopes, we can solve adjacency test problems in pseudo polynomial time.
متن کاملLattice-Free Polytopes and Their Diameter
A convex polytope in real Euclidean space is lattice-free if it intersects some lattice in space exactly in its vertex set. Lattice-free polytopes form a large and computationally hard class, and arise in many combinatorial and algorithmic contexts. In this article, aane and combinatorial properties of such polytopes are studied. First, bounds on some invariants, such as the diameter and layer-...
متن کاملAdjacency on Combinatorial Polyhedra
This paper shows some useful properties of the adjacency structures of a class of combinatorial polyhedra including the equality constrained 0-1 polytopes. The class of polyhedra considered here includes 0-1 polytopes related to some combinatorial optimization problems; e.g., set partitioning polytopes, set packing polytopes, perfect matching polytopes, vertex packing polytopes and all the face...
متن کاملHypercube Related Polytopes
Body centered structures are used as seeds for a variety of structures of rank 3 and higher. Propellane based structures are introduced and their design and topological properties are detailed.
متن کاملOrder-Chain Polytopes
Given two families X and Y of integral polytopes with nice combinatorial and algebraic properties, a natural way to generate new class of polytopes is to take the intersection P = P1 ∩ P2, where P1 ∈ X, P2 ∈ Y . Two basic questions then arise: 1) when P is integral and 2) whether P inherits the “old type” from P1,P2 or has a “new type”, that is, whether P is unimodularly equivalent to some poly...
متن کامل